bricks are landing

algorithmic design of bricks pavilion (book) W.E. Lorenz, G. Wurzer (Hrg.). Mit einem Vorwort von Franz Kolnerberger (Geschäftsführer Vertrieb Wienerberger Österreich GmbH).
ISBN: 978-3-9504464-1-8
Im Zuge des kleinen Entwerfens “bricks are landing” (WS 2017) wurde die algorithmische Formfindung und/oder Optimierung an Hand eines freistehenden Pavillons untersucht. Übergeordnetes Ziel des Entwerfens war es das Verständnis und den Einsatz des algorithmischen Denkens in der Architekturpraxis zu fördern. ...

Journal Paper: A Cell-Based Method to Support Hospital Refurbishment

in  Applied Mechanics and Materials (Volume 887)

G. Wurzer, U. Coraglia, U. Pont, C. Weber, W Lorenz, A. Mahdavi

Hospital refurbishments often take place in parallel to regular operation, resulting in a scheduling problem: Construction activities must located such as they do not clash with daily work activities and vice versa. ...

Handbuch für Gildefunktionäre: Leitfaden der Pfadfinder-Gilde Österreichs

Überarbeitet von Wolfgang E. Lorenz, Ferry Partsch, Werner Weilguny. Das Handbuch dient als Nachschlagewerk und bietet eine umfangreiche Information zu allen relevanten Aspekten einer einzelnen Pfadfinder-Gilde. ...

Options for obtaining a 'Gründerzeit' flat – A wet dream explored by means of a Cellular Automata model

Talk and Proceeding: eCAADe 2018 - Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference (Lodz, Poland, 2018). (paper & talk)

G. Wurzer, W Lorenz. This work explores the dichotomy between old areas offering high-quality living in a low-density neighborhood (typically near the city center) and newly-developed areas with high-density and lesser quality in the suburbs. ...


Architekt Robert Kramreiter – die Pfarrkirche Maria Lourdes: Anlässlich der 60 Jahrfeier des Weihetermines der Pfarrkirche Maria Lourdes in Wien Meidling werden vor allem die Einflüsse verschiedener Personengruppen im Zuge der Entwurfsplanung betrachtet.

Studie 3D Visualisierung

Studie/Visualisierung zur Planänderung des Flächenwidmungs- und Bebauungsplanes an Hand eines konkreten Fallbeispieles.

zur 3D-Studie


II Fractals - A Definition

The best way to define a fractal is through its attributes: a fractal is "rugged", which means that it is nowhere smooth, it is "self-similar", which means that parts look like the whole, it is "developed through iterations", which means that a transformation is repeatedly applied and it is "dependent on the starting conditions". Another characteristic is that a fractal is "complex", but nevertheless it can be described by simple algorithms - that also means that beneath most natural rugged objects there is some order.

2.1 What is a Fractal?

"Fractals are objects of any kind whose spatial form is nowhere smooth, hence termed "irregular", and whose irregularity repeats itself geometrically across many scales"[01].

In fact there are so many different types of fractals, some of which will be introduced in chapter "3 Different Fractals", that it is not possible to give one definition for all of them. Besides, when we are talking about fractals in general we should never forget that there are many which have not been found yet. Considering this circumstance, it is more useful to describe some of their characteristics.

2.2 Characteristics

... the world is chaotic, discontinuous, irregular in its superficial physical form but ... beneath this first impression lies an order which is regular, unyielding and of infinite complexity[02].

2.3 Influences

There is one important fact about the group of "general" fractals namely the natural development. This means that for the growth of natural but also for artificial objects many additional influences have to be thought of. Thus a tree or a fern can be produced by fractal geometry but these pictures nevertheless offer some differences in respect to their natural brothers. A tree standing alone on a hill for example is influenced by the wind blowing there, which forms the tree in one typical form: branches are only to be found on the side turning away from the direction the wind blows. Other influences may be soil and water conditions, kinds of plants nearby and animals.

Nevertheless "true" fractals can produce typical natural and man-made forms, but only under sterile conditions. If some random factor is added then the resulting objects come nearer to the "real" world. Likewise the development of cities underlies a couple of influences like natural barriers such as hills and rivers, but also man-made ones such as roads leading to other towns, important industrial areas and green-zones of which the growth of the city reacts. The same is true for elevations and even ground plans of buildings that react to the surrounding no matter whether it is man-made or natural.

From that follows that if we know the underlying algorithm of any object - under sterile conditions - and if some mechanisms for simulation of certain influences are added, we may determine future developments of e.g. the growth of a city.


[01] Batty and Longley, Fractal Cities (1994), Academic Press Inc., ISBN 0-12-4555-70-5, p.3.
[02] Fractals can be called the geometry of chaos. Batty and Longley, Fractal Cities (1994), Academic Press Inc., ISBN 0-12-4555-70-5, introduction p.v.