### kleines Entwerfen "gesteckt nicht geschraubt"

digitales Entwerfen

G. Wurzer, W.E. Lorenz, S. Swoboda. Im Zuge der Lehrveranstaltung wird die Digitalisierung vom Entwurfsprozess bis zur Produktion an Hand einer selbsttragenden Holzstruktur untersucht: vom Stadtmöbel über die Skulptur zur Brücke. ...

### Visual representation of adjacencies

eCAADe SIGraDi 2019 - Architecture in the Age of the 4th Industrial Revolution. (paper & talk)

W Lorenz, G. Wurzer. This paper is based on the assumption that a key challenge of good design is spatial organisation as a result of functional requirements. The authors present a new NetLogo application that assists designers to understand the proposed functional relationships (of spaces) by visualizing them graphically. ...

### kleines Entwerfen customized bricks

digitales Entwerfen

G. Wurzer, W.E. Lorenz, S. Swoboda. Nach positiver Absolvierung der Lehrveranstaltung sind Studierende in der Lage algorithmisch zu Denken. Durch das Präzisieren der Problemstellung sind die Studierenden in der Lage den sinnvollen Einsatz von Algorithmen im Planungsprozess gedanklich zu erfassen. ...

### Bridgemagazine Webpage

Webdesign für das bridgmagazin – Medieninhaber (Herausgeber) und Verleger: Österreichischer Bridgesportverband (ÖBV) | Audio Video Werbe-GmbH.

## 6.2.4 Helping Tool## 6.2.4.a Mathematical FractalsAs indicated before, some mathematical fractals can be used as a visual help for planning streets, footpaths and the like under the view-point of irregularity or in line with the question about how much of a certain area can be supplied - the higher the fractal dimension the higher the irregularity and the more of the entire space can be reached. Besides, fractals may also act as a first approach for defining the distribution of buildings or the size and position of properties, the fractal dimension of the resulting site-plan saying something about the irregularity of the project - see picture 79. |

picture 79: Simulations |

## 6.2.4.b CurdlingMandelbrot named the process that produces a fractal dust, which is a disconnected set of points with clustered characteristics, "curdling". Examples for such a fractal dust are the Cantor set, introduced in chapter " |

picture 80: Curdling
theoretical dimension for the possibility of 2/3: theoretical dimension for the possibility of 5/6: theoretical dim. for the possibility of 2/9: D=0.631; |

The fractal dimension of a fractal dust, produced in such a way, can be measured with the aid of the box-counting method, using the formula - introduced in chapter " The "curdling" process, as described in this section, produces a fractal dust that may act as a first sketch of a site plan for one-family houses or row houses, the fractal dimension indicating the density. In this connection the environment, a mountain ridge or the like, can be used as an instruction for the "curdling" process in so far that the probability can be derived from the measured fractal dimension of this surrounding. But repeating the "curdling" process with the same starting options, that is probabilities, results in different shapes, which is also pointed out by different actual fractal dimensions - the theoretical fractal dimension is generated with the remaining boxes of the ideal case of a certain probability. Thus a couple of "site-plans" of the same probability can be generated, where finally the most useful "site-plan" elaborated further by adapting it to the surroundings, such as existing roads, hills or rivers. |