Visual representation of adjacencies

eCAADe SIGraDi 2019 - Architecture in the Age of the 4th Industrial Revolution. (paper & talk)
W Lorenz, G. Wurzer. This paper is based on the assumption that a key challenge of good design is spatial organisation as a result of functional requirements. The authors present a new NetLogo application that assists designers to understand the proposed functional relationships (of spaces) by visualizing them graphically. ...

kleines Entwerfen customized bricks

digitales Entwerfen
G. Wurzer, W.E. Lorenz, S. Swoboda. Nach positiver Absolvierung der Lehrveranstaltung sind Studierende in der Lage algorithmisch zu Denken. Durch das Präzisieren der Problemstellung sind die Studierenden in der Lage den sinnvollen Einsatz von Algorithmen im Planungsprozess gedanklich zu erfassen. ...

Bridgemagazine Webpage

Webdesign für das bridgmagazin – Medieninhaber (Herausgeber) und Verleger: Österreichischer Bridgesportverband (ÖBV) | Audio Video Werbe-GmbH.

Stegreifentwerfen Hot Wood follow up

follow up "Würschtlstand"
W.E. Lorenz, G. Wurzer, S. Swoboda. Nach positiver Absolvierung der Lehrveranstaltung sind Studierende in der Lage algorithmisch zu Denken. Konkret erlangen sie die Fähigkeit jene Teile des Entwurfsprozesses zu erkennen, die ausprogrammiert zu schnelleren und allenfalls besseren Lösungen führen. Dabei greifen die Studierenden auf die Ergebnisse des kleinen Entwerfens "Hot Wood" aus dem Sommersemester 2019 zurück. ...

 

3.5 L-Systems - Lindenmayer-Systems

Lindenmayer-Systems, are like the IFS very close to naturally looking objects. The biologist Aristid Lindenmayer developed this variant to describe plant-forms. Similarly to the transformation rules of IFS, which makes “n” new elements out of one by a certain rule, the Lindenmayer-System in its first step uses symbols as a set of rules. To illustrate this stage, a set of transformations may for example be given by: "l" is replaced by "l+l--l+l".

That means starting with "l", the first iteration for this example runs as follows "l+l--l+l", the second one "(l+l--l+l) + (l+l--l+l) - - (l+l--l+l) + (l+l--l+l)" and so on. But this does not lead to any picture - e.g. plant-form. Therefore a second step is required, which translates the symbols into drawing rules. "l" for example symbolizes a piece of a straight line forward, "-" an angle of e.g. 60 degrees to the right and "+" an angle of 60 degrees to the left. By that it is possible to generate self-similar mathematical fractals but also plants, bushes and trees - see picture 19.

picture 19: Lindenmayer-Systems; the Koch curve:

rule = “l + l - - l + l” with
l = line 
+ = +60 degrees
- = -60 degrees
pictures after 1 and 4 iterations

picture 19: L-Systems; a bush:

rule = “l [ + l ] l [ - l] l” [Jürgens Hartmut, Peitgen Heinz-Otto, Saupe Dietmar: Fraktale - eine neue Sprache für komplexe Strukturen, Spektrum der Wissenschaft (9/1989), p.62.] with
l = line 
+ = +28.58 degrees
- = -28.58 degrees
[ = start of a branch
] = end of a branch
pictures after 1,2 and 4 iterations

picture 19: some more pictures produced with L-Systems

An example for a bush is given in "Scientific American"[01] with "l" being turned into the expression "l [ + l ] l [ - l] l". There "l" once more symbolizes a piece of a straight line forward, "-" a certain angle to the right and "+" one to the left. The new symbol of "[" defines the start and "]" the end of a new branch - see picture 19. The Lindenmayer-System reduces the high information of plants through short instructions, which leads to one possibility of application, the usage in computer-generated film sequences, where computer power has to be reduced.

Footnotes

[01] Jürgens Hartmut, Peitgen Heinz-Otto, Saupe Dietmar: Fraktale - eine neue Sprache für komplexe Strukturen, Spektrum der Wissenschaft (9/1989), p.62.